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ORIENTATION MECHANICS OF LIQUID CRYSTALS.

TRANSITION TO A LOCAL COORDINATE SYSTEM

UDC 532.783S. I. Trashkeev

Equations of orientation mechanics of liquid crystals, written in a local rotational coordinate system
related to the director orientation, are considered. A condition is obtained, which ensures qualita-
tive similarity between solutions predicted by an approximate (single-constant) model and solutions
obtained with the original formulation of the problem. Equations that provide a more exact approxi-
mation to the general model are proposed. The use of matrices in recording of energy relations allows
a fairly easy transition to other coordinate systems and studying more sophisticated models for the
description of the orientation state of liquid crystals. A transition to a local coordinate system makes
it possible to compute three-dimensional liquid-crystal structures on moderate-performance personal
computers.
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Introduction. Equations that describe the state of liquid crystals (LC) follow from the continuum theory
of mechanics of anisotropic liquids. The Ericksen–Leslie approach has been most comprehensively developed and
is widely used in studying the liquid-crystal state [1, 2]. Previously, many phenomena that occur in liquid crystals
could be considered with the use of a one- or two-dimensional (normally, in the linear approximation) model with
deformation of LC orientation in one plane. Currently, this is insufficient. The need in considering more complicated
models is primarily determined by the development of nanotechnologies [3] based on studying polymer and liquid-
crystal composites [4, 5]. When new properties of such composites are described, a three-dimensional problem is
often posed, which have to be solved to determine the orientation state of a liquid crystal containing small-scale or
point defects.

Though the Ericksen–Leslie theory has been finalized, derivation of the full system of equilibrium equations
for the LC director is rather cumbersome. Such a procedure (e.g., with the use of the MAPLE symbolic language,
otherwise errors are possible) for a three-dimensional nematic liquid crystal (NLC) without allowance for hydrody-
namics yields a system of equations that will take several pages to be recorded. In this case, even a preliminary
analysis does not seem possible. A matrix formalism whose basic mathematical postulates are borrowed from me-
chanics of continuous media [6, 7] is proposed in the present paper. In a theoretical study, this approach allows
one to use many postulates of the algebra of rotation groups SU(2), SO(3) [8] and to write the final equations in a
rather compact form, substantially facilitating both the preliminary analysis and the transition to other coordinate
systems. A model that describes orientation interactions in the liquid crystal (without allowance for liquid motion)
is considered.

Continuum Equations. For an incompressible isothermal anisotropic liquid, the basic unknowns are the
velocity field v = v(t, r), the director n = n(t, r) (for a uniaxial medium), and the pressure p(t, r) [t is the time
and r = (x, y, z) ≡ (x1, x2, x3) is the radius vector in the Cartesian coordinate system]. The system of equations
for finding n, v, and p can be written in the form [2]
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∂

∂xj

∂F

∂ (∂ni/∂xj)
− ∂F

∂ni
− λni = I

∂2ni

∂t2
+ γ1

(∂ni

∂t
− Vijnj

)
+ γ2njΩji,

div v =
∂vj

∂xj
= 0, (1)

ρ
(∂vi

∂t
+ vj

∂vi

∂xj

)
= fi +

∂Σji

∂xj
,

where λ = λ(t, r) is the Lagrangian factor, which provides the fulfillment of the normalization condition n2 = 1;
F , I, and ρ are the density of free energy, density of the moment of inertia, and mass density of the NLC, respectively,
fi are the components of the bulk force density vector, Σji is the stress tensor. Summation is performed over repeated
indices if not indicated otherwise. In the variants of LC interaction with external fields under consideration, we
may neglect the contribution of ponderomotive or strictional forces to fj [2] and assume that

fj = − ∂p

∂xj
(f = −∇p),

where p is the ambient pressure. The stress tensor is the sum of the elastic (terms depending on F ) and viscous
parts:

Σij = − ∂F

∂ (nk/∂xi)
∂nk

∂xj
+ μ1ninjΩkmnknm + μ2ni

(∂nj

∂t
− Vjknk

)

+ μ3nj

(∂ni

∂t
− Viknk

)
+ μ4Ωij + μ5ninkΩkj + μ6Ωiknknj

(μ1, . . . , μ6 are the viscous Leslie coefficients and γ1 = μ3 − μ2 and γ2 = μ6 − μ5). The components of the
velocity-gradient tensor are written as

Ωij =
1
2

( ∂vi

∂xj
− ∂vj

∂xi

)
, Vij =

1
2

( ∂vi

∂xj
+

∂vj

∂xi

)
.

The density of free energy F is determined by internal elastic forces depending on ni, on the gradients ∂ni/∂xj ,
and on the parameters of external forcing. If F is considered as a functional, the left side of the first equation of
system (1) is the Lagrangian variation in terms of the variables ni and ∂ni/∂xj [1, 2].

If we introduce the quantity F̄ as

F̄ = F − I
(∂n

∂t

)2

, (2)

where I(∂n/∂t)2 is the rotational kinetic energy, and vary F̄ with respect to an additional variable ∂ni/∂t, the
overall variation takes the form

δF̄

δni
=

∂

∂t

∂F̄

∂ (∂ni/∂t)
+

∂

∂xj

∂F̄

∂ (∂ni/∂xj)
− ∂F̄

∂ni
− λni = 0, (3)

where
∂

∂t

∂F̄

∂ (∂ni/∂t)
= −I

∂2ni

∂t2
.

The remaining equations of system (1) are written in the previous form with the substitution F → F̄ . In the general
form, the functional F̄ with the opposite sign is an analog of the Lagrangian for rotational motion of a solid in
analytical mechanics.

Matrix Form of the Expression for Free Energy. To derive the equations, we choose the Cartesian
coordinate system and use the following notation: θ = θ(t, r) and ϕ = ϕ(t, r) are the polar and azimuthal angles,
respectively, which are related to n by

n = (nx, ny, nz) = (sin θ cosϕ, sin θ sin ϕ, cos θ). (4)

To simplify the computations, the following notation is reasonable:

Sθ = sin θ, Cθ = cos θ, Sϕ = sin ϕ, Cϕ = cosϕ,
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m = (mx, my, mz) =
∂n

∂θ
= (CθCϕ, CθSϕ,−Sθ),

p = (px, py, pz) =
1
Sθ

∂n

∂ϕ
= (−Sϕ, Cϕ, 0),

(5)

(nm) = 0, (np) = 0, (mp) = 0

(m and p are additional unit vectors orthogonal to n). The directions n, m, and p form the right triplet of vectors
and satisfy the following relations:

[mp] = n, [pn] = m, [nm] = p. (6)

In the case of a strained state of the NLC or a cholesteric liquid crystal (CLC) with the absence of polarity
(equivalence of the directions n and −n), the expression for the density of free energy F is written as the sum of
several terms that take into account different types of interaction in the medium [1]. Taking into account Eq. (2)
and omitting the bar over F , we write the relation

F = −Fk + Fel + FE + Fd + Fsf , (7)

where

Fel = (1/2){K1(div n)2 + K2(n rotn + q0)2 + K3[n rotn]2},

Fk = I
(∂n

∂t

)2

, FE = − εa

8π
(nE)2, Fd = −(PE).

(8)

We introduce the notation for potential energy: Fp = Fel +FE +Fd. Here Fk and Fel are the rotational kinetic and
elastic energies, FE and Fd are the anisotropic (electrostatic) and flexoelectric (dipole) contributions to the energy
of LC interaction with the electric field E = E(t, r), K1, K2, and K3 are the Frank constants, q0 = 2π/h0 is the
wavenumber of an undisturbed CLC (q0 = 0 refers to the nematic state), h0 is the pitch, εa = ε|| − ε⊥, where ε||
and ε⊥ are the parameters of the dielectric permeability tensor, which is expressed via the Cartesian components
of the director ni in the form

εij = ε⊥δij + εaninj, i, j = {x, y, z}
(δij is the Kronecker delta). The vector P (density of the dipole moment) has the form [2]

P = e1n div n − e3[n rotn],

where e1 and e3 are the flexoelectric coefficients. The contribution of the surface part of the energy Fsf in the final
equations is taken into account by the boundary conditions for the director n; therefore, Fsf need not be defined
explicitly in the present work. The total free energy is determined by the volume and surface integrals

Ftot =
∫
V

F dv +
∫
S

Fsf ds (9)

(V is the LC volume and S is the area bounding the volume).
The equations of orientation motion determining the dependence n = n(t, r) are derived from system (1)

with v ≡ 0 or by minimization of the total free energy (9) with respect to all variations of the director n (3) and
phenomenological allowance for the relaxation term with the first derivative with respect to time. As a result, we
obtain a relation of the form [2]

I
∂2nj

∂t2
+ γ1

∂nj

∂t
=

∂

∂xi

∂F

∂ (∂nj/∂xi)
− ∂F

∂nj
− λnj ,

λ(t, r) = −I
∂nj

∂t

∂nj

∂t
+

(
nj

∂

∂xi

∂F

∂ (∂nj/∂xi)
− nj

∂F

∂nj

)
.

(10)

In using the variational approach for obtaining dissipative equations of motion in the absence of hydrodynamic
flows, one can use a more rigorous (than phenomenological) approach based on introducing a relaxation potential
[9]. In the steady-state case, where the unknowns are independent of time, Eq. (10) acquires the form
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0 =
∂

∂xi

∂F

∂ (∂nj/∂xi)
− ∂F

∂nj
− λnj , (11)

whereby

λ(t, r) = nj

( ∂

∂xi

∂F

∂ (∂nj/∂xi)
− ∂F

∂nj

)
.

Within the framework of the trigonometric presentation of the director n (2), it is not necessary to introduce
the Lagrangian factor, because the normalization conditions are satisfied automatically. Then the variational relation
(10) transforms to a system of equations for the angles θ and ϕ:

δF

δθ
=

∂

∂t

∂F

∂ (∂θ/∂t)
+ γ1

∂θ

∂t
− ∂

∂xi

∂F

∂ (∂θ/∂xi)
+

∂F

∂θ
= 0,

δF

δϕ
=

∂

∂t

∂F

∂ (∂ϕ/∂t)
+ γ1S

2
θ

∂ϕ

∂t
− ∂

∂xi

∂F

∂ (∂ϕ/∂xi)
+

∂F

∂ϕ
= 0.

(12)

Equations (10)–(12) have to be supplemented by the boundary conditions for n or θ and ϕ at points on S. Substi-
tuting Eqs. (4), (5) into the expression for the elastic part of the density of free energy Fel, we obtain the following
relation from Eq. (8):

Fel =
K1

2
[(m∇θ) + Sθ(p∇ϕ)]2 +

K2

2
[−(p∇θ) + Sθ(m∇ϕ) + q0]2 +

K3

2
[m(n∇θ) + Sθp(n∇ϕ)]2.

The expression for Fel can be reasonably written as the sum of the nematic part (q0 = 0) and an additive determining
the cholesteric order (q0 �= 0):

Fel = F 0
el + Fh

el.

Here

F 0
el =

K1

2
[(m∇θ) + Sθ(p∇ϕ)]2 +

K2

2
[−(p∇θ) + Sθ(m∇ϕ)]2 +

K3

2
[m(n∇θ) + Sθp(n∇ϕ)]2, (13)

Fh
el = K2q0(n rotn) = K2q0[−(p∇θ) + Sθ(m∇ϕ)].

Similar trigonometric substitutions for P and Fd yield the relations

P = e1n[(m∇θ) + Sθ(p∇ϕ)] + e3[m(n∇θ) + Sθp(n∇ϕ)].

Then, we obtain

Fd = −e1(nE)[(m∇θ) + Sθ(p∇ϕ)] − e3[(mE)(n∇θ) + Sθ(pE)(n∇ϕ)].

The electric part of free energy remains unchanged, and the kinetic term Fk transforms to

Fk =
I

2

[(∂θ

∂t

)2

+ S2
θ

(∂ϕ

∂t

)2]
=

I

2

(
θ̇2 + S2

θ ϕ̇2
)
. (14)

Let us consider the expression for the elastic part of free energy of the nematic (q0 = 0) F 0
el. Developing the

quadratures, we obtain

F 0
el =

K1

2
[(m∇θ)2 + S2

θ(p∇ϕ)2] +
K2

2
[(p∇θ)2 + S2

θ (m∇ϕ)2]

+
K3

2
[(n∇θ)2 + S2

θ (n∇ϕ)2] + Sθ[K1(m∇θ)(p∇ϕ) − K2(p∇θ)(m∇ϕ)]. (15)

We can write the cross term in Eq. (15) in a symmetric form if we use the vector identity

Sθ[(m∇θ)(p∇ϕ) − (m∇ϕ)(p∇θ)] = Sθ(n[∇θ∇ϕ]) (16)

and take into account that the complex in the right side of Eq. (16) does not contribute to variation (12):

δ

δθ
Sθ(n[∇θ∇ϕ]) =

δ

δϕ
Sθ(n[∇θ∇ϕ]) =

δ

δθ
(n[∇θ∇ϕ]) =

δ

δϕ
(n[∇θ∇ϕ]) = 0. (17)

The resultant expression for F 0
el takes the form
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F 0
el =

K1

2
[(m∇θ)2 + S2

θ(p∇ϕ)2] +
K2

2
[(p∇θ)2 + S2

θ (m∇ϕ)2]

+
K3

2
[(n∇θ)2 + S2

θ (n∇ϕ)2] +
K1 − K2

2
Sθ[(m∇θ)(p∇ϕ) + (p∇θ)(m∇ϕ)]. (18)

For the single-constant case, where K1 = K2 = K3 = K, Eq. (13) for Fel = F 0
el + Fh

el transforms to the expression

Fel = (K/2)[(∇θ)2 + S2
θ (∇ϕ)2] + Kq0[−(p∇θ) + Sθ(m∇ϕ)],

whose variation is written as
δFel

δθ
= K[Δθ − SθCθ(∇ϕ)2 + 2q0Sθ(n∇ϕ)],

δFel

δϕ
= K[div (S2

θ∇ϕ) − 2q0Sθ(n∇θ)].
(19)

The variation of the kinetic energy is found in a similar manner:

δFk

δθ
=

∂

∂t

∂Fk

∂ (∂θ/∂t)
− ∂Fk

∂θ
= I

[∂2θ

∂t2
− SθCθ

(∂ϕ

∂t

)2]
,

δFk

δϕ
=

∂

∂t

∂Fk

∂ (∂ϕ/∂t)
− ∂Fk

∂ϕ
= I

∂

∂t

(
S2

θ

∂ϕ

∂t

)
.

(20)

According to Eqs. (19) and (20), the equations of orientation motion of the director with allowance for the relaxation
term in the absence of external forcing acquire the form of nonlinear hyperbolic equations for decaying waves [7]:

I(θ̈ − SθCθϕ̇
2) + γ1θ̇ = K[Δθ − SθCθ(∇ϕ)2 + 2q0Sθ(n∇ϕ)],

I
∂

∂t
(S2

θ ϕ̇) + γ1S
2
θ ϕ̇ = K div [S2

θ∇ϕ − 2q0Sθ(n∇θ)]
(21)

(the dot indicates the derivative with respect to time).
The equations of motion in a trigonometric form (21) for negligibly low inertia are given in [10]. For I ≈ 0,

Eqs. (21) transform to a system of nonlinear parabolic equations of the type of heat-conduction or diffusion equations
[7]. In the above-mentioned papers and in [11–13], interaction of bounded light beams with nematic liquid crystals
(q0 = 0) was considered by means of numerical computations. Zharkova and Trashkeev [14] considered a particular
case of steady-state equations (21) for computing the orientation structure of a cholesteric liquid crystal (q0 �= 0) in
a spherical capsule. Equations in the form (21) are fairly simple, and their solutions in most cases do not differ from
the exact description of the orientation structures of liquid crystals. Such a statement is normally given without
proof [1]. An analysis of this situation requires a detailed consideration of both approaches.

We write Eq. (18) in the matrix form

F 0
el =

1
2

( ∂θ

∂xi
Tij

∂θ

∂xj
+ S2

θ

∂ϕ

∂xi
Φij

∂ϕ

∂xj
+ (K1 − K2)Sθ

∂θ

∂xi
Λij

∂ϕ

∂xj

)
, (22)

where

[Tij ] =

⎛
⎜⎝

(K1C
2
θ + K3S

2
θ )C2

ϕ + K2S
2
ϕ (K1C

2
θ + K3S

2
θ − K2)SϕCϕ (K3 − K1)SθCθCϕ

(K1C
2
θ + K3S

2
θ − K2)SϕCϕ (K1C

2
θ + K3S

2
θ )S2

ϕ + K2C
2
ϕ (K3 − K1)SθCθSϕ

(K3 − K1)SθCθCϕ (K3 − K1)SθCθSϕ K1S
2
θ + K3C

2
θ

⎞
⎟⎠ ; (23)

[Φij ] =

⎛
⎜⎝

(K2C
2
θ + K3S

2
θ)C2

ϕ + K1S
2
ϕ (K2C

2
θ + K3S

2
θ − K1)SϕCϕ (K3 − K2)SθCθCϕ

(K2C
2
θ + K3S

2
θ − K1)SϕCϕ (K2C

2
θ + K3S

2
θ )S2

ϕ + K1C
2
ϕ (K3 − K2)SθCθSϕ

(K3 − K2)SθCθCϕ (K3 − K2)SθCθSϕ K2S
2
θ + K3C

2
θ

⎞
⎟⎠ ; (24)

[Λij ] =

⎛
⎜⎝

−2CθCϕSϕ Cθ(C2
ϕ − S2

ϕ) SθSϕ

Cθ(C2
ϕ − S2

ϕ) 2CθCϕSϕ −SθCϕ

SθSϕ −SθCϕ 0

⎞
⎟⎠ . (25)
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The matrices T = [Tij ], Φ = [Φij ], and Λ = [Λij ] are symmetric. The elastic free energy is presented as the sum
of two quadratic forms of the gradients ∂θ/∂xi and ∂ϕ/∂xi and the biquadratic form of the same gradients. The
quantities T , Φ, and Λ can be presented via orthogonal matrices [6] as

T = QtT̃Q, Φ = QtΦ̃Q, Λ = QtΛ̃Q, detQ = 1,

where the superscript “t” means transposition,

Q = [Qij ] =

⎛
⎝ mx my mz

px py pz

nx ny nz

⎞
⎠ =

⎛
⎝ CθCϕ CθSϕ −Sθ

−Sϕ Cϕ 0
SθCϕ SθSϕ Cθ

⎞
⎠ . (26)

This matrix obeys the orthogonality expression Q−1 = Qt. Thereby, the matrices T̃ , Φ̃, and Λ̃ take the form

T̃ =

⎛
⎝ K1 0 0

0 K2 0
0 0 K3

⎞
⎠ , Φ̃ =

⎛
⎝ K2 0 0

0 K1 0
0 0 K3

⎞
⎠ , Λ̃ =

⎛
⎝ 0 1 0

1 0 0
0 0 0

⎞
⎠ .

If we write the biquadratic term in the expression for elastic free energy without symmetrization with the
use of Eq. (16), we obtain another expression equivalent for the variation

F 0
el =

1
2

( ∂θ

∂xi
Tij

∂θ

∂xj
+ S2

θ

∂ϕ

∂xi
Φij

∂ϕ

∂xj
+ 2Sθ

∂θ

∂xi
Πij

∂ϕ

∂xj

)
,

where the matrix Π can be presented in the form

Π = QtΠ̃Q = Qt

⎛
⎝ 0 K1 0

−K2 0 0
0 0 0

⎞
⎠Q.

According to [6], the matrices T̃ , Φ̃, and (K1 − K2)Λ̃ are strain tensors; the matrix Q is responsible for rotation
in a three-dimensional Euclidean space, because detQ = 1, and can be presented as the product of two orthogonal
matrices

Q = NM, N =

⎛
⎝ Cθ 0 −Sθ

0 1 0
Sθ 0 Cθ

⎞
⎠ , M =

⎛
⎝ Cϕ Sϕ 0

−Sϕ Cϕ 0
0 0 1

⎞
⎠ .

Here N = N(θ), M = M(ϕ), and Q = Q(θ, ϕ) are the elements of the rotation group SO(3) [8] by the angles θ

and ϕ.
A similar presentation is written for the remaining terms of the potential part in the expression for free

energy (7), (8):

FE = − εa

8π
(nE)2 = − εa

8π
EiLijEj , L = Qt

⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠Q; (27)

Fd = −(PE) = −EiAij
∂θ

∂xj
− SθEiBij

∂ϕ

∂xj
. (28)

Here

A = [Aij ] =

⎛
⎜⎝

(e1 + e3)SθCθC
2
ϕ (e1 + e3)SθCθSϕCϕ Cϕ(e3C

2
θ − e1S

2
θ )

(e1 + e3)SθCθSϕCϕ (e1 + e3)SθCθS
2
ϕ Sϕ(e3C

2
θ − e1S

2
θ )

Cϕ(e1C
2
θ − e3S

2
θ ) Sϕ(e1C

2
θ − e3S

2
θ ) −(e1 + e3)SθCθ

⎞
⎟⎠ ; (29)

B = [Bij ] =

⎛
⎜⎝

−(e1 + e3)SθSϕCϕ Sθ(e1C
2
ϕ − e3S

2
ϕ) −e3CθSϕ

Sθ(e3C
2
ϕ − e1S

2
ϕ) (e1 + e3)SθSϕCϕ e3CθCϕ

−e1CθSϕ e1CθCϕ 0

⎞
⎟⎠ . (30)
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After orthogonal expansion, the matrices A and B become

A = QtÃQ, Ã =

⎛
⎝ 0 0 e3

0 0 0
e1 0 0

⎞
⎠ , B = QtB̃Q, B̃ =

⎛
⎝ 0 0 0

0 0 e3

0 e1 0

⎞
⎠ .

The additive to the density of free energy Fh
el due to allowance for the cholesteric order is written as the sum

Fh
el = K2q0

(
− pi

∂θ

∂xi
+ Sθmi

∂ϕ

∂xi

)
. (31)

Thus, the original expression for the density of free energy (7), (8) is presented as linear, quadratic, and
biquadratic forms in a factorized form with respect to the variational variables θ, ϕ, θ̇, ϕ̇, ∂θ/∂xi, and ∂ϕ/∂xi.

Apart from Eq. (17), other commutation relations are also valid, which satisfy the zero variation and are
obtained by cyclic permutation of unit vectors. In addition to Eq. (16), we can write the expressions

g1 ≡ (p∇θ)(n∇ϕ) − (p∇ϕ)(n∇θ) = (m[∇θ∇ϕ]),

g2 ≡ (n∇θ)(m∇ϕ) − (n∇ϕ)(m∇θ) = (p[∇θ∇ϕ]), (32)

g3 ≡ (m∇θ)(p∇ϕ) − (m∇ϕ)(p∇θ) = (n[∇θ∇ϕ]),

G ≡ [∇θ∇ϕ]

for which the following conditions are satisfied:

δg1

δθ
=

δg1

δϕ
= 0,

δg2

δθ
=

δg2

δϕ
= 0,

δg3

δθ
=

δg3

δϕ
= 0,

δ (GG)
δθ

=
δ (GG)

δϕ
= 0,

δGi

δθ
=

δGi

δϕ
= 0, i = {x, y, z}.

Variation (12) of all terms F (7) in the matrix form can now be performed; the result will be presented in
a comparatively compact form, because all variables are separated, and differentiation is trivial. The derivatives of
the introduced matrices are calculated as follows:

∂T

∂θ
= 2M tN tT̃

∂N

∂θ
M = 2M t ∂N t

∂θ
T̃NM,

∂T

∂ϕ
= 2M tN tT̃N

∂M

∂ϕ
= 2

∂M t

∂ϕ
N tT̃NM. (33)

Here

∂N

∂θ
=

⎛
⎝ −Sθ 0 −Cθ

0 0 0
Cθ 0 −Sθ

⎞
⎠ ,

∂M

∂ϕ
=

⎛
⎝ −Sϕ Cϕ 0

−Cϕ −Sϕ 0
0 0 0

⎞
⎠ .

The calculations for the remaining matrices Φ, L, A, and B are performed in a similar manner by substituting
them instead of T into Eq. (33). Nevertheless, the computational procedure and the final form of the equations
remain rather cumbersome. For a more compact form, we propose replacement of variables, similar to that used in
mechanics of continuous media in the transition from the Eulerian to the Lagrangian coordinates [6]. The possibility
of using such a transition to curvilinear coordinates was indicated long ago by Ericksen [2], but no detailed analysis
with indication of a particular form of the conversion has not been performed until now.

Transition to a Local Coordinate System. The quadratic form of recording the expression for free
energy with the use of matrices allows us to pass to a curvilinear local coordinate system

(x, y, z) ≡ (x1, x2, x3) → (ξ1, ξ2, ξ3) ≡ (ξ, η, ζ) (34)

by means of the transformation

∂ξi

∂xj
= Qij , ξi =

∫
Qij dxj + Ci,

where, according to the rules of the vector analysis, C = (C1, C2, C3) is a vector function equal to the rotors
of another arbitrary vector function [7, 9] determined in each particular case and depending on the form of the
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boundary conditions. For Eq. (34) to exist, the Jacobian of transformation has to be other than zero. Taking into
account the definition of Q as a rotation matrix (26), we obtain

∂ (ξ1, ξ2, ξ3)
∂ (x1, x2, x3)

= det
[ ∂ξi

∂xj

]
= detQ = 1.

In the new variables (ξ1, ξ2, ξ3) ≡ (ξ, η, ζ), the components of free energy are written as

F 0
el = (1/2)[K1θ

2
ξ + K2θ

2
η + K3θ

2
ζ + S2

θ (K2ϕ
2
ξ + K1ϕ

2
η + K3ϕ

2
ζ)] + (K1 − K2)Sθ(θξϕη + θηϕξ).

Here the Greek subscripts at θ and ϕ indicate differentiation with respect to the corresponding coordinates. The
kinetic term Fk remains unchanged (14). The cholesteric, dielectric, and flexoelectric additives acquire the form

Fh
el = K2q0(−θη + Sθϕξ),

FE = −εaE
2
ζ /(8π), Fd = −e1Eζ(θξ + Sθϕη) − e3(Eξθζ + SθEηϕζ),

where ⎛
⎝ Eξ

Eη

Eζ

⎞
⎠ = Q

⎛
⎝ Ex

Ey

Ez

⎞
⎠ =

⎛
⎝ CθCϕ CθSϕ −Sθ

−Sϕ Cϕ 0
SθCϕ SθSϕ Cθ

⎞
⎠

⎛
⎝ Ex

Ey

Ez

⎞
⎠ . (35)

In the case of variation of free energy written in the original coordinate system, the electric field vector E is assumed
to be independent of the variational variables [15]. In the case of the transition to local coordinates, according to
Eq. (35), we have to take into account the conditions and properties following from the definition of the unit vectors
(4)–(6), namely,

∂ (mE)
∂θ

= −(nE),
∂ (mE)

∂ϕ
= Cθ(pE),

∂ (pE)
∂θ

= 0,
∂ (pE)

∂ϕ
= (lE),

∂ (nE)
∂θ

= (mE),
∂ (nE)

∂ϕ
= Sθ(pE)

or
∂Eξ

∂θ
= −Eζ ,

∂Eξ

∂ϕ
= CθEη,

∂Eη

∂θ
= 0,

∂Eη

∂ϕ
= −SθEξ − CθEζ ,

∂Eζ

∂θ
= Eξ,

∂Eζ

∂ϕ
= SθEη.

The operation of divergence, which is necessary to compute the variational relations, acquires the following form in
the local coordinate system:

div Z → d̃ivZ̃ + Zξ(−θζ + Cθϕη) − Zη(Cθϕξ + Sθϕζ) + Zζ(θξ + Sθϕη)

[Z and Z̃ = (Zξ, Zη, Zζ) are arbitrary differentiable vectors in the original and local coordinate systems, respec-
tively]. To simplify the relations, it is reasonable to introduce the vector χ = χ(x, y, z) → χ̃ = χ̃(ξ, η, ζ). Then,
the expressions for potential energy variation in the local coordinate system become

δFp

δθ
=

∂

∂xi

∂Fp

∂ (∂θ/∂xi)
− ∂Fp

∂θ
→ ∂

∂ξi

∂Fp

∂ (∂θ/∂ξi)
+ χ̃i

∂Fp

∂ (∂θ/∂ξi)
− ∂Fp

∂θ
,

δFp

δϕ
=

∂

∂xi

∂Fp

∂ (∂ϕ/∂xi)
− ∂Fp

∂ϕ
→ ∂

∂ξi

∂Fp

∂ (∂ϕ/∂ξi)
+ χ̃i

∂Fp

∂ (∂ϕ/∂ξi)
− ∂Fp

∂ϕ
.

Here
χ̃ → Qχ,

χ ≡ (χx, χy, χz) = m div m + p div p + n div n

= m[−(n∇θ) + Cθ(p∇ϕ)] − p[Cθ(m∇ϕ) + Sθ(n∇ϕ)] + n[(m∇θ) + Sθ(p∇ϕ)],

χ̃ ≡ (χξ, χη, χζ) ≡ (−θζ + Cθϕη,−Cθϕξ − Sθϕζ , θξ + Sθϕη);
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the tilde means that the corresponding operation is performed in the local coordinate system, and the vectors in
performing the transformation have to be written in the form of columns.

The resultant relations allow us to perform variation and to find expressions for orientation motion of the
director. Thus, the contribution of the elastic part of free energy is written as

δF 0
el

δθ
= K1[θξξ + Cθϕη(θξ − Sθϕη)] + K2[θηη − θη(Cθϕξ + Sθϕζ) + Sθϕξ(Sθϕζ − Cθϕξ)]

+ K3[θζζ + Sθθζϕη − Sθϕζ(Sθϕξ + Cθϕζ)] + (K1 − K2)Sθ(ϕξη + Cθϕ
2
η),

δF 0
el

δϕ
= K1

[ ∂

∂η
(S2

θϕη) − Cθθηθξ

]
+ K2

[ ∂

∂ξ
(S2

θϕξ) + (Cθθξ + Sθθζ)θη − S2
θϕξθζ

]
(36)

+ K3

[ ∂

∂ζ
(S2

θϕζ) − Sθθηθζ + S2
θϕζθξ

]
+ (K1 − K2)

[ ∂

∂η
(Sθθξ) − SθCθθηϕη

]
.

The additive due to the cholesteric order becomes
δFh

el

δθ
= 2K2q0Sθϕζ ,

δFh
el

δϕ
= −2K2q0Sθθζ . (37)

The variations of the dielectric (FE) and flexoelectric (Fd) terms are written as

δFE

δθ
=

εa

4π
EξEζ ,

δFE

δϕ
=

εa

4π
SθEηEζ ; (38)

δFd

δθ
= e1

(
Eξ(θξ + Sθϕη) − ∂Eζ

∂ξ

)
+ e3

(
Eη(Cθϕζ + Sθϕξ) − Eζθζ − SθEξϕη − ∂Eξ

∂ζ

)
,

δFd

δϕ
= e1Sθ

(
Eη(θξ + Sθϕη) − ∂Eζ

∂η

)
+ e3Sθ

(
Eξθη − Eηθξ − (CθEξ + SθEζ)ϕζ − ∂Eη

∂ζ

)
.

(39)

Thus, a system of equations for orientation motion of the NLC and CLC director in a local coordinate system
is obtained. In considering the corresponding interaction, we have to sum up the variational relations (20), (36)–
(39), which allow us to take into account the influence of external geometric and internal configurational conditions,
as well as electric fields, in a fairly general statement. Using a similar approach, we can consider more complicated
models of the functional of free energy (7), (8), which take into account higher (than quadratic) terms of expansion,
for example, the elastic Nehring–Saupe model [16] or a model including quadrupole interaction with electric fields
[17].

Single-Constant Approximation. Let us determine to which extent the description of the orientation
structure on the basis of the single-constant approximation agrees with the model that takes into account the differ-
ence in all elastic coefficients under strain. The following comment should be preliminary made. If differentiation
is considered as an action of certain operators, we can formally write⎛

⎝ ∂/∂ξ

∂/∂η

∂/∂ζ

⎞
⎠ ↔ Q

⎛
⎝ ∂/∂x

∂/∂y

∂/∂z

⎞
⎠ ↔

⎛
⎝ (m∇)

(p∇)
(n∇)

⎞
⎠ ; (40)

in this case, the procedure of the transition from one coordinate system to another is reduced to simple replacement
of the corresponding operators in accordance with Eq. (40). The resultant variational relations transform to similar
relations written in the original coordinate system.

To analyze the single-constant case, we write the elastic part of variation of free energy (36) under the
condition K1 = K2 = K3 = K. We obtain

δF 0
el

δθ
= K

[
Δ̃θ − SθCθ(∇̃ϕ)2 + Cθ g̃3 − Sθg̃1

]
,

δF 0
el

δϕ
= K

[
d̃iv (S2

θ ∇̃ϕ) − S2
θ g̃2

]
. (41)

Here the tilde means that the corresponding operation is performed in the local coordinate system. The vector
g̃ = (g̃1, g̃2, g̃3) = (gξ, gη, gζ) is the vector product in the local coordinate system

g̃ = [∇̃θ∇̃ϕ] = (θηϕζ − θζϕη,−θξϕζ + θζϕξ, θξϕη − θηϕξ)
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and is related to the above-introduced vectors g and G (32) by the transformation relation

g̃ →
⎛
⎝ g1

g2

g3

⎞
⎠ = Q[∇θ∇ϕ] = QG =

⎛
⎝ (mG)

(pG)
(nG)

⎞
⎠ .

Equalities (41) written in the original coordinate system transform to Eq. (19) at q0 = 0. Thereby, we have to take
into account the vector identities, which follow from the definition of the unit vectors (4) and (5),

Δ̃θ → (m∇(m∇θ)) + (p∇(p∇θ)) + (n∇(n∇θ)) = Δθ − θxϕy + θyϕx = Δθ − Gz,

Δ̃ϕ → (m∇(m∇ϕ)) + (p∇(p∇ϕ)) + (n∇(n∇ϕ))

= Δϕ + Sϕ(θyϕz − θzϕy) + Cϕ(θzϕx − θxϕz) = Δϕ + SθGx + CθGy,

(∇̃θ)2 → (m∇θ)2 + (p∇θ)2 + (n∇θ)2 = (∇θ)2,

(∇̃ϕ)2 → (m∇ϕ)2 + (p∇ϕ)2 + (n∇ϕ)2 = (∇ϕ)2,

and the definition of the components of the vector product G = [∇θ∇ϕ]. According to Eq. (32), we can write

G = m(mG) + p(pG) + n(nG) = g1m + g2p + g3n,

Cθg3 − Sθg2 = Gz , CϕGy − SϕGx = g2,

G ≡ [∇θ∇ϕ] = (θyϕz − θzϕy,−θxϕz + θzϕx, θxϕy − θyϕx).

Note that the quantities g1, g2, and g3 and the components of the vector G under variation make a zero
contribution to the equations of motion. In other words, they are functions of coordinates only and do not explicitly
depend on time. By analogy with the definitions of analytical mechanics, they may be called integrals of motion,
whose values are determined by correlated initial and boundary conditions. This fact is important in integrating
the equations of motion and particularly important in the numerical implementation. The use of the above-derived
integrals of motion yields a severalfold reduction of the computational time and computer memory.

In addition to the quantities gi and Gi, we can indicate several more integrals of motion, including an
external action, which are based on considering the free energy functional as a certain generalized Lagrangian and
on Nöther’s theory [18]. The matrix approach and the transition to a local coordinate system allows us to formalize
and to extend the search for unchanged quantities, which was proposed in [18].

It is rather difficult to compare the equations of motion for the nematic liquid crystal (q0 = 0) in the single-
constant approximation of the form (21) and Eqs. (20), (36)–(39) for K1 �= K2 �= K3, which are written in the
original coordinate system, because a large amount of computations is needed. This can be reasonably done by
comparing the corresponding functionals for the elastic part of free energy, written in the local coordinate system.
In the multi-constant and single-constant cases, the expressions for F 0

el are

F 0
el(Ki) = (1/2)[K1θ

2
ξ + K2θ

2
η + K3θ

2
ζ + S2

θ (K2ϕ
2
ξ + K1ϕ

2
η + K3ϕ

2
ζ)] + Sθ(K1 − K2)(θξϕη + θηϕξ); (42)

F 0
el(K) = (K/2)

[
(∇̃θ)2 + S2

θ (∇̃ϕ)2
]
. (43)

We introduce the operators of gradients, in which the spatial variables have different scales, by the expression

∇̃0 = K1/2
( ∂

∂ξ
,

∂

∂η
,

∂

∂ζ

)
, ∇̃1 =

(
K

1/2
1

∂

∂ξ
, K

1/2
2

∂

∂η
, K

1/2
3

∂

∂ζ

)
, ∇̃2 =

(
K

1/2
2

∂

∂ξ
, K

1/2
1

∂

∂η
, K

1/2
3

∂

∂ζ

)
.

Then, Eqs. (42) and (43) become

F 0
el(Ki) = (1/2)

[
(∇̃1θ)2 + S2

θ (∇̃2ϕ)2
]

+ Sθ(K1 − K2)(θξϕη + θηϕξ); (44)

F 0
el(K) = (1/2)

[
(∇̃0θ)2 + S2

θ (∇̃0ϕ)2
]
. (45)
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It follows from a comparison of relations (44) and (45) that the solutions agree qualitatively only if the variation of
the last term in (44) is zero or negligibly small. The additive acquires an exact zero value at least in two cases: 1) if
the sought solutions depend only on one coordinate variable; 2) if the strained state of the liquid crystal is described
by a plane configuration, i.e., one of the angles in the definition of director orientation (4) is identically equal to a
constant. The orientation states of liquid crystals considered in the literature mainly refer to these particular cases.
In the general form, the solutions of the approximate and exact models are in qualitative agreement if relations of
the following form are used in writing the approximate equations:

δF 0
el

δθ
= K[Δθ − SθCθ(∇ϕ)2] + K12Sθϕxy,

δF 0
el

δϕ
= K[div (S2

θ∇ϕ)] + K12Sθθxy (46)

[θxy = ∂2θ/∂x ∂y, ϕxy = ∂2ϕ/∂x∂y, K12 ∼ (K1 − K2), and K ∼ (1/3)(K1 + K2 + K3) are fitting parameters].
In deriving Eq. (46) in cross components proportional to the difference K1 − K2, we retained terms that are not
repeated in the remaining terms at the coefficients Ki.

Finally, we have to comment on transitions to other coordinate systems. If vector equations of motion written
with respect to the director n = n(t, r) in the form (3) are used, replacement of variables requires transformations
of both coordinates and all vector quantities in the equations. This procedure leads to extremely cumbersome
computations, especially in a three-dimensional version. The trigonometric form of recording of the equations
of motion (12) with respect to the scalar quantities θ = θ(t, r) and ϕ = ϕ(t, r), as in the transition to a local
coordinate system, allows us to transform only the coordinate variables and to leave the sought angles θ and ϕ

defined in the Cartesian coordinate system. An exception is a cylindrical case, because re-definition of the angular
variables reduces to simple replacement

θcyl = θcar, ϕcyl = ϕcar − α,

where α is the angular coordinate in a cylindrical coordinate system r = (ρ, z, α). At the same time, re-definition
of the functions of the angles in a spherical coordinate system yields nonlinear dependences of the form

cos θsph = cos θcar cos γ − sin θcar sinγ cos (ϕcar − α), ϕsph = ϕcar − α,

where γ and α are the angular polar and azimuthal coordinates in a spherical coordinate system r = (r, γ, α).
The subscripts “cyl,” “car,” and “sph” mean that the variable is defined in the cylindrical, Cartesian, or spherical
coordinate system.

If the sought angular variables are defined in the Cartesian coordinate system, the transition to a new
coordinate system is performed by transformation of matrices introduced into the expression for free energy:

W̃ = RtWR,
∂x̃i

∂xj
= Rij .

Here x̃i are the new coordinates, R = [Rij ] is the matrix of the transition xi → x̃i, and W is one of the above-
introduced matrices T , Φ, Λ, L, A, and B [see Eqs. (23)–(25), (27), (29), and (30)].

Thus, a matrix approach is proposed for the case of the absence of hydrodynamic flows, and a compact
system of equations of orientation motion of the NLC and CLC director in a local coordinate system related to the
orientation of the director proper is derived. By analyzing the derived equations, a condition is obtained, which
is necessary for qualitative agreement of solutions predicted by the approximate (single-constant) model and those
obtained with the exact statement of the problem. A generalized form of the approximate equations is proposed.
The matrix form of recording the equations of motion is considered, which allows a fairly simple transition to other
coordinate systems and makes it possible to study more sophisticated models for the description of the orientation
state of the liquid crystal. The process of derivation of the necessary equations can be readily brought to an
algorithm form with the use of symbolic languages. The studies that involve the use of a local coordinate system
allow computations for three-dimensional dynamic LC systems even on moderate-performance personal computers.
Numerical experiments performed for some particular cases (with the use of the same computational code) showed
that the time spend on computations in the local coordinate system can be one tenth of the time needed for
integration of equations in the original coordinate system. Test computations showed that solutions predicted by
the approximate model (46) are qualitatively identical to results obtained by the exact model, which takes into
account the difference in all elastic coefficients.

The author is grateful to S. K. Godunov for consultations and supporting this work.
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